Пользовательский поиск

Книга Энциклопедический словарь (А). Содержание - Асимптота поверхности

Кол-во голосов: 0

Пример асимптотической кривой усматриваем в кривой 3-го порядка, определяемой уравнением y=х2 + I/х. Очевидно, что по мере увеличения абсциссы х в положительную или отрицательную сторону, член I/x будет неопределенно уменьшаться, а х2 увеличиваться, так что ордината у будет приближаться все более и более к значению х2, которого однако никогда не достигает. Отсюда ясно, что рассматриваемая нами кривая имеет А-ской кривой параболу, определяемую уравнением у=х2 Для весьма малых положительных или отрицательных значений абсциссы х случится обратное положение: численная величина дроби I/x неопределённо возрастает, а х2 напротив того, уменьшается, так что ордината у будет стремиться к равенству с I/x ; таким образом, равностороння гипербола, отнесенная в своим асимптотам, будет также А-ою предложенной кривой.

Асимптота поверхности

Асимптота поверхности называется прямая линия, пересекающая поверхность по крайней мере в двух бесконечно удаленных точках.

Асимптотическая плоскость

Асимптотическая плоскость — плоскость, касающаяся данной поверхности в бесконечно удаленной точке, но не лежащая вся в бесконечности.

Асимптотическая поверхность

Асимптотическая поверхность — поверхность, обертывающая асимптотические плоскости к некоторой поверхности. Всякая поверхность имеет, вообще говоря, бесконечно. большое число бесконечно удаленных точек, а именно все точки пересечения ее с бесконечно удаленною плоскостью, совокупность которых составляет бесконечно-удаленную кривую, лежащую на данной поверхности. Всякой точке этой кривой соответствует одна А., так что поверхность имеет бесконечное число А., вещественных или мнимых. Так как в тоже время во всякой точке можно провести к поверхности касательную плоскость, то поверхность имеет и бесконечное число асимптотических плоскостей, вещественных или мнимых. Всякая такая плоскость заключает в себе бесконечное число А., а так как все эти А. пересекают поверхность в одной и той же бесконечно удаленной точке, то они между собой параллельны. А.-ческая поверхность очевидно линейчатая поверхность. Пусть уравнение данной поверхности есть F(x, у, z)=0 и пусть х — n/l = у — h/m = z — z/n есть уравнение одной из А. Расположим F по однородным функциям n-го, n-1-го и т.д. измерений: F=jn + jn-1 +...+ j1 + j0 Точки пересечения А. и поверхности суть корни уравнения F(x+lr, h+mr, z+nr)= 0. Назовем через D операцию тогда будет, если jn , jn-1 ... означают функции от l,m,n rnjn+ rn-1j1-n (Djn + jn-1) +(1/2)rn-2D2jn (Djn-1 +jn-2)+...=0

Простая A. получится, если два корня этого уравнения обратятся в бесконечность, т. е. если jn = 0 и Djn +jn-1 =0. Уравнения эти показывают, что все асимптоты параллельны производящей конической поверхности jn(х, у, z)=0 и что все А. параллельные одной из производящих этого конуса лежать в одной плоскости параллельной плоскости касательной в конусу с соответствующей производящей.

Уравнение u=Djn + jn-1=0 есть уравнение одной асимптотической плоскости. Для смежной асимптотической плоскости будет причем также и в силу равенства l2 + m2 + n2 =1 ldl + mdm + ndn =0 , откуда получается .

Это последнее уравнение вместе с u=0 изображает линии сечения двух смежных асимптотических плоскостей, то есть одну из производящих асимптотической поверхности. Исключая из этих двух уравнений и jn (l, m, n)=0 величины l, m, n, получим искомое уравнение асимптотической поверхности. Можно показать, что в общем случае порядок асимптотической поверхности для поверхности n-го порядка есть n (3n — 5). Поверхности 2-го порядка суть единственные, для которых асимптотические поверхности также 2-го порядка. В особенных точках поверхностей их асимптотические поверхности могут быть низшего порядка. В каждой касательной плоскости есть две инфлексиональные касательные; точно также в каждой асимптотической плоскости есть две инфлексиональные асимптоты, проходятся через три последовательные точки поверхности, а так как плоскость проведенная через инфлексиональную касательную пересекает поверхность по кривой, имеющей точку перегиба в точке касания этой касательной, то кривая пересечения поверхности и плоскости проходящей через инфлексиональную асимптоту имеет точку перегиба в бесконечности. Инфлексиональные асимптоты суть линии пересечения поверхности 1/2 D2 jn + Djn-1 = 0 и плоскости Djn + jn-1 = 0.

Если поверхность имеет двойную точку в бесконечности, то вместо конуса jn = 0 получится цилиндр второго порядка. Касательные в двойной точке, вообще говоря, пересекают поверхность в трех точках. Точно также есть шесть производящих асимптотического цилиндра, пересекающих поверхность в четырех точках. Кривая пересечения поверхности с плоскостью параллельной направлению производящих цилиндра имеет двойную точку в бесконечности. Эта двойная точка обращается в угловую точку, если плоскость проходить через производящую цилиндра.

Асимптотическая точка

Асимптотическая точка. — Так называется точка, около которой обращается кривая и, неопределенно приближаясь к ней, никогда ее не достигает. Примером А-ой точки могут служить так назыв. локсодромия и спираль арифметическая.

Аскариды

Аскариды (Ascaridae или глисты) — семейство из класса круглых червей, названных так из-за формы их тела. От остальных кишечных глистов А. отличаются тем, что рот их окружен тремя губами. Тело их совершенно круглое, кожица плотная, эластическая, внутренности подвешены в полости тела, как в трубке. Полы раздельны, самец всегда несколько меньше самки. Последняя кладет огромное множество яичек, которые выносятся наружу вместе с испражнениями того животного, внутри которого живет аскарида. Каким образом происходить заражение глистами — до сих пор с точностью неизвестно, хотя существует предположение, что личинки аскарид попадают во внутренности человека или иных животных вместе с крахмалистыми растениями, на которых они живут в виде микроскопически малых червячков. С другой стороны возможно допустить, что яички аскарид развиваются предварительно в т.н. промежуточном хозяине и лишь через него попадают в постоянного. Самый известный из видов аскарид есть аскарида или глиста человеческая (Ascaris lumbricoides), живущая в тонкой кишке преимущественно человека, но встречающаяся впрочем также у лошадей, рогатого скота и свиней. По наружному виду она напоминает дождевого червя, достигает в длину до 250 мм. и причиняет глистную болезнь у детей. Припадки этой болезни, вызываемые аскаридой, редко бывают так сильны, как вызываемые ленточной глистой, при том же аскарида часто пропадает сама, или, по крайней мере, легко может быть устранена соответствующей медицинской помощью. Для удаления ее употребляют обыкновенно цитварное семя. Второй вид того же семейства есть острица детская (Oxyuris vermicularis), не превышающая в длину 9 мм. и отличающаяся заостренным хвостом; она живет целыми тысячами в толстых кишках у детей, вызывая у них острый зуд и являясь причиной некоторых дурных привычек. Промывания и клистиры известковой водой или разбавленным уксусом убивают немедленно этих глистов.

151
© 2012-2016 Электронная библиотека booklot.ru