Пользовательский поиск

Книга Черная маска из Аль-Джебры. Содержание - Молотобойцы (Сева — Нулику)

Кол-во голосов: 0

Старый знакомый

(Таня — Нулику)

Дорогой Нулик! Мы все еще в том же заколдованном месте.

Расшифровали записку и стали решать задачу стручка. Бились, бились — ничего не выходит! Хотели уж идти в Автоматическую справочную, но Пэ отсоветовал.

Черная маска из Аль-Джебры - pict54.jpg

— Если вы в самом деле хотите помочь одному незнакомцу, — сказал он таинственно, — решите эту задачу сами. Но для этого необходимо составить уравнение…

Легко сказать, составить уравнение! Составить треугольник Паскаля — это еще куда ни шло, но уравнение?…

— Понимаю, — посочувствовал Пэ, — вы еще не были на нашем образцовом строительстве. Иначе вы уже знали бы, с чем это едят.

— Строительство и уравнение? — покачал головой Сева.

— Ничего удивительного! Неужели вы думаете, что можно построить что-нибудь без уравнений?

Мы хотели сейчас же, сию минуту отправиться на это необыкновенное строительство, но директор напомнил, что сегодня праздник. Придется подождать до завтра.

— Кстати, — добавил он, — сейчас в нашем кафе начнется выступление знаменитого фокусника. Хотите посмотреть?

Не стоило и спрашивать. Кто же откажется от такого удовольствия? И можешь себе представить, на эстраде появился тот самый фокусник, который выступал в карликанском цирке! Мы обрадовались ему, как родному. Сейчас он станет делить нуль на тысячу частей, покажет Великана из Бесконечности… Но все было иначе.

Черная маска из Аль-Джебры - pict55.jpg

Фокусник поднял руку, и в ней неизвестно откуда появилась длинная палка. Потом он выпустил палку, но она не упала, а продолжала лежать в воздухе, как на столе. Фокусник предложил публике убедиться, что палка не какая-нибудь фальшивая, а выточенная из цельного куска дерева.

Первым на эстраду выскочил Сева, за ним — еще несколько посетителей. Все они подтвердили, что никакого обмана нет.

Тогда фокусник взмахнул рукой, и вот уже на палке, как воробьи на проводах, уселись его ассистенты-числа.

— Обратите внимание, — сказал фокусник, — числа расположены на палке в определенном порядке. Каждое, начиная слева, больше предыдущего на одно и то же число.

— На два! — крикнули из зала.

— Правильно, на два.

Фокусник снова взмахнул рукой, и на палке появились другие числа:

Черная маска из Аль-Джебры - pict56.jpg

— Попрошу уважаемую публику ответить: какой порядок в этом ряду чисел?

— Каждое число больше предыдущего на пять, — сказала я.

— Благодарю вас, — поклонился фокусник. — Так вот, должен вам сделать потрясающее сообщение: ряд чисел, где каждое последующее число больше предыдущего на постоянную величину, называется ар-р-р-ифметической пр-р-р-ро-грессией. Но это еще не все. Эта постоянная величина называется разностью прогрессии. И более того: сами числа называются членами прогрессии!

— Ага! Значит, в первом случае разность прогрессии была равна двум, а во втором — пяти, — сказал кто-то.

— Браво! — воскликнул фокусник.

Сева толкнул меня локтем:

— Все это хорошо, но когда начнутся фокусы?

Фокусник, наверное, услышал его слова. Он лукаво посмотрел на Севу и снова взмахнул рукой. И вдруг палка, толстая палка, выточенная из цельного куска дерева, согнулась посредине и концы ее сошлись. Теперь числа, сидевшие, на равном расстоянии от концов, оказались точно друг против друга: три — против сорока восьми, восемь — против сорока трех, и так далее.

— Попрошу сложить любую пару чисел, — предложил фокусник.

Мы сложили: три и сорок восемь. Получилось пятьдесят один. Затем восемь и сорок три. Снова пятьдесят один. Тринадцать плюс тридцать восемь… Что такое? Опять пятьдесят один! И восемнадцать плюс тридцать три, и двадцать три плюс двадцать восемь — все они в сумме давали одно и то же число: пятьдесят один.

— Вот это уже фокус! — закричал Сева.

— Где фокус? — развел руками фокусник. — Это вы называете фокусом? Ха-ха-ха! Обыкновеннейшее алгебраическое правило.

— Но в чем же тогда фокус? — хорохорился Сева.

Фокусник небрежно разогнул палку, словно она была из бумаги.

Черная маска из Аль-Джебры - pict57.jpg

— Попробуйте положить палку в воздухе, согнуть ее пополам, потом снова разогнуть и вы не станете задавать мне такие вопросы!

Все засмеялись, захлопали, а фокусник продолжал: — Предлагаю сделать небольшой опыт. Кто из вас быстрее сложит все числа этой арифметической прогрессии? Раз, два, три — начали!

В зале зашептались, зашуршала бумага, задвигались карандаши. Мы тоже стали складывать:

3 + 8 + 13 + 18 + 23 + 28 + 33 + 38 + 43 + 48.

Сначала складывали в уме, потом — столбиком. От волнения все время сбивались. Нам очень хотелось сосчитать быстрее. Но почему-то получалось медленно. Под конец чуть не подрались.

Но тут фокусник поднял руку:

— Стоп! Никуда не годится, слишком долго считаете. Можно гораздо быстрее. — И он снова согнул палку пополам. — Попрошу убедиться! Перед вами пять пар чисел. Сумма каждой — пятьдесят один, а сумма пяти пар в пять раз больше. Беру пятьдесят один, умножаю на пять. И что я получаю? Я получаю двести пятьдесят пять! А теперь попробуйте сами. Желающие, проходите, проходите, не стесняйтесь!

Мне уж давно хотелось принять участие в опытах, да как-то неловко было. Но Олег подтолкнул меня, и я очутилась на эстраде.

Черная маска из Аль-Джебры - pict58.jpg

Теперь на палке были уже другие числа:

— Прошу найти сумму этих чисел, — сказал фокусник. — Быстренько, быстренько!

— В прогрессии восемь членов, — сказала я, — значит, четыре пары. Сумма крайних членов — сорок два. Умножаю сорок два на четыре. Получается сто шестьдесят восемь. Правильно?

— Абсолютно правильно! — подтвердил фокусник. — Сто шестьдесят восемь!

— Но позвольте, — вмешался Сева, — почему вы в Аль-Джебре решаете карликанские задачи? Это же простая арифметика!

— Вот именно простая. Применяя такой способ, мы упрощаем решение. Обратите внимание: упрощение — один из главных девизов Аль-Джебры. Другой ее девиз — обобщение. Правило, которое я сейчас вам показал, справедливо для любой арифметической прогрессии. И следовательно…

32
© 2012-2016 Электронная библиотека booklot.ru